Mining Tar Sands Produces Much More Air Pollution Than We Thought

By Joseph Stromberg, Smithsonian Magazine, February 3, 2014

Research shows that emissions of a class of air pollutants are two to three orders of magnitude higher than previously calculated

Last week, the U.S. State Department released a report indicating that the proposed Keystone XL pipeline, which would carry oil from Western Canada’s Athabasca oil sands to the U.S., wouldn’t have significant environmental impacts. It’s worth noting, though, that the report didn’t say that extraction from the oil sands itself won’t have environmental impacts—just that this mining will proceed with or without the pipeline being built.

Your feelings on the pipeline aside, it’s well-established among scientists that extraction of oil from these oil sands (also known as tar sands) is environmentally dicey. The petroleum found in them doesn’t flow easily like conventional crude—it’s a sticky, viscous type formally known as bitumen but more commonly known as tar—so companies have to resort to alternate measures, either surface mining (digging up the rock or sand covering the oil-laden sediment) or injecting steam to get it out of the Earth.

This uses up an enormous amount of water, distributes toxic metals into the surrounding watershed and perhaps most important leads to an estimated 14 percent higher level of greenhouse gas emissions than conventional oil, because some natural gas must be burned simply to convert the bitumen into a usable form.

To this list of concerns, we can now add another. A new study, published today in Proceedings of the National Academy of Sciences, shows that production in the Athabasca oil sands region is leading to the emission of levels of polycyclic aromatic hydrocarbons (PAHs) two to three orders of magnitude higher—that’s one hundred to one thousand times greater—than previously thought. These higher levels of PAHs in the area aren’t imminently dangerous (they’re comparable to levels found in urban areas, which result from burning gasoline in cars and trucks), but they’re significantly higher than reported in mining companies’ environmental impact assessments and Canada’s official National Pollutant Release Inventory.

Frank Wania and Abha Parajulee, environmental scientists at the University of Toronto, came to the finding by looking at previous estimates for the PAH emissions that result from mining (gleaned from the pollutant release inventory and the mining companies’ environmental impact assessments) and comparing them to levels of PAHs that they measured in the air in the Athabasca region.

“We found that these estimates are insufficient to explain what’s being measured in the environment,” Wania says. “The concentrations of PAHs that should be out there, based on these assumptions, are far too low.”…

continue reading and follow numerous links at Smithsonian Magazine

Advertisements

Leave a comment

Filed under Environment, Energy, Science

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s